Calcium binding by human and rabbit serum paraoxonases. Structural stability and enzymatic activity.

نویسندگان

  • C L Kuo
  • B N La Du
چکیده

Equilibrium dialysis and Scatchard plots were used to establish that human and rabbit paraoxonases both have two calcium binding sites. Independent-site and stepwise constant analyses were used to calculate a higher affinity site (Kd1) of 3.6 +/- 0.9 x 10(-7) M for human A paraoxonase, and 1.4 +/- 0.5 x 10(-8) M for rabbit paraoxonase, and a lower affinity site (Kd2) of 6.6 +/- 1.2 x 10(-6) M for human A paraoxonase, and 5.3 +/- 0.94 x 10(-6) M for rabbit paraoxonase. In both species, the higher affinity sites were found to be essential to maintain hydrolytic activity; complete removal of calcium led to irreversible inactivation. The lower affinity sites were required for catalytic activity, and their binding of calcium was reversible. Experimentally estimated values of Kd2 based on the concentration of calcium required to obtain half the maximum enzymatic activity were 3 microM for human A and B paraoxonases, and also in the order of 3 microM for rabbit paraoxonase, using three different substrates. Calcium was the only metal found that protects against denaturation and also confers hydrolytic activity with these two mammalian paraoxonases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Paraoxonase has a major role in the hydrolysis of prulifloxacin (NM441), a prodrug of a new antibacterial agent.

NM441 is a prodrug of the new quinolone carboxylic acid antibacterial agent NM394. A rat serum enzyme (NM441-hydrolase) that catalyzes the hydrolysis of NM441 to NM394 was purified by ultracentrifugation, heparin-Sepharose column chromatography, and HPLC with a Mono Q anion exchange column. The enzyme showed a single protein band after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. ...

متن کامل

Molecular dynamics simulation and docking studies on the binding properties of several anticancer drugs to human serum albumin

Disposition and transportation of anticancer drugs by human serum albumin (HSA) affects their bioavailability, distribution and elimination. In this study, the interaction of a set of anticancer drugs with HSA was investigated by molecular dynamics and molecular docking simulations. The drugs' activities were analyzed according to their docking scores, binding sites and structural descriptors. ...

متن کامل

Directed evolution of serum paraoxonase PON3 by family shuffling and ancestor/consensus mutagenesis, and its biochemical characterization.

Serum paraoxonases (PONs) are calcium-dependent lactonases with anti-atherogenic and detoxification functions. Here we describe the directed evolution and characterization of recombinant variants of serum paraoxonase PON3 that express in an active and soluble manner in Escherichia coli. These variants were obtained by combining family shuffling and phylogeny-based mutagenesis: the limited diver...

متن کامل

Molecular Dynamics Simulation and Free Energy Studies on the Interaction of Salicylic Acid with Human Serum Albumin (HSA)

Human serum albumin (HSA) is the most abundant protein in the blood plasma. Molecular dynamics simulations of subdomain IIA of HSA and its complex with salicylic acid (SAL) were performed to investigate structural changes induced by the ligand binding. To estimate the binding affinity of SAL molecule to subdomains IB and IIA in HSA protein, binding free energies were calculated using the Molecu...

متن کامل

Co-amoxiclav Effects on the Structural and Binding Properties of Human Serum Albumin

Human serum albumin (HSA) is the most abundant plasma protein in the human body. HSA plays an important role in drug transport and metabolism. This protein has a high affinity to a very wide range of materials, including metals such as Cu2+ and Zn2+, fatty acids, amino acids and metabolites such as bilirubin and many drug compounds. In this study, we investigated the effects of co-amoxiclav, as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 26 7  شماره 

صفحات  -

تاریخ انتشار 1998